Modeling Term Structures of Defaultable Bonds

Duffie and Singleton (1999)

Presented by Xicheng Jiang

Outline

- Introduction of defaultable claims modeling
- Consider alternative recovery methods
- Valuation of defaultable bonds

Review

• For a contingent claim X at T, given its real-world cont'd return μ :

$$V_0 = e^{-\mu T} E[X]$$

• Using the equivalent martingale approach:

$$V_0 = e^{-rT} E^Q[X]$$

ullet If the risk-free rate r is random process (this is the case in most fixed-income modelling)

$$V_0 = E^Q \left[\exp\left(-\int_0^T r_t dt\right) X \right]$$

Hazard Rate

- Survival function: S(t) = prob(T > t), which is decreasing
- Default probability: $S(t) S(t + \Delta t) = prob(t \le T < t + \Delta t)$
- Conditional default probability:

$$\frac{S(t) - S(t + \Delta t)}{S(t)} = \frac{prob(t \le T < t + \Delta t)}{prob(T > t)} = prob(T < t + \Delta t \mid T > t)$$

- "Density" of conditional default probability: $\frac{S(t)-S(t+\Delta t)}{\Delta t \cdot S(t)}$
- Hazard rate: $h(t) = \lim_{\Delta t \to 0} \frac{S(t) S(t + \Delta t)}{\Delta t \cdot S(t)}$
- As a result, the conditional default probability in a short time interval dt can be written as h(t)dt

Intuition

- Short rate process r_t and equivalent martingale measure Q
- Let h_t denotes the hazard rate for default at time t
- Let L_t denotes the expected <u>fractional loss</u> in market value if default were to occur at time t, conditional on \mathcal{F}_t
- The initial market value of the defaultable claim to X is

$$V_0 = E^Q \left[\exp\left(-\int_0^T R_t dt\right) X \right]$$

where the default-adjusted short-rate process $R_t = r_t + h_t L_t$

Need to be proven under both discrete and continuous settings

Defaultable Claims in Discrete Space

• Let φ_s denotes the dollar amount of recovery given default at time s. What's the market value of an asset V_t , given future recovery φ_{t+1} given default and future value V_{t+1} given no default?

$$V_t = h_t e^{-r_t} E_t^Q [\varphi_{t+1}] + (1 - h_t) E_t^Q [V_{t+1}]$$

Recursively solving forward...

$$V_{t} = E_{t}^{Q} \left[\sum_{j=0}^{T-1} h_{t+j} e^{-\sum_{k=0}^{j} r_{t+k}} \varphi_{t+j+1} \prod_{l=0}^{j} (1 - h_{t+l-1}) \right] +$$

$$E_{t}^{Q} \left[e^{-\sum_{k=0}^{T-1} r_{t+k}} \varphi_{t+T} \prod_{j=1}^{T} (1 - h_{t+j-1}) \right]$$

Defaultable Claims in Discrete Space

• Suppose we adapt "RMV" (recovery of market value) assumption here, i.e., take the RN expected recovery as a fraction of RN expected survival contingent market value.

$$E_s^Q[\varphi_{s+1}] = (1 - L_s)E_s^Q[V_{s+1}]$$

• Substitute it into the V_t expression:

$$V_{t} = h_{t}e^{-r_{t}}(1 - L_{t})E_{t}^{Q}[V_{t+1}] + (1 - h_{t})e^{-r_{t}}E_{t}^{Q}[V_{t+1}]$$
$$= E_{t}^{Q}[e^{-\sum_{j=0}^{T-1} R_{t+j}}X_{t+T}]$$

- Where $e^{-R_t} = (1 h_t)e^{-r_t} + h_t e^{-r_t}(1 L_t)$
- Or $R_t = r_t + h_t L_t$

Defaultable Claims in Discrete Space

- Why this representation is good?
- If we assume that h_t and L_t are exogenous process, we can just model R for the defaultable bonds, instead of r, using single- or multifactor model such as CIR or Vasicek, or HJM model.
- State Dependence is accommodated, i.e., h_t and L_t may be correlated with each other, with r_t , with economic cycle...
- If the exogeneity is violated, we must find other methods. (For example, market value of recovery is fixed..)

Figure 1 Distributions of recovery by seniority

- Contingent claim (Z, τ) : random variable Z and stopping time τ where Z is paid. Z is \mathcal{F}_{τ} measurable.
- The ex-dividend price process U for (Z, τ) is given by:

$$U_t = E_t^Q \left[\exp\left(-\int_t^\tau r_u du\right) Z \right]$$

- Defaultable claim ((X,T),(X',T')): (X,T) is the obligation of issuer to pay X at T. (X',T') defines the stopping time T' when the issuer defaults and X' is recovered.
- Actual claim (Z, τ) generated by such a defaultable claim is defined by:

$$\tau = \min(T, T')$$
 $Z = X1_{\{T < T'\}} + X'1_{\{T \ge T'\}}$

- Note that T' is random by nature since we don't know when the issuer defaults.
- We model T' by setting a variable $\Lambda_t = 1_{\{t \geq T'\}}$
- From the definition of hazard rate, we know that the instantaneous conditional default probability can be written as $h_t dt$. However, in this case, a defaultable claim can only default once. Once it defaults the probability will become one and will never change. To model this, we rewrite the probability as $(1-\Lambda_t)h_t dt$
- After adding a demean process M_t , we can get

$$d\Lambda_t = (1 - \Lambda_t)h_t dt + dM_t$$

• The payoff X' at default is also random. It is modeled as

$$X' = (1 - L_t)U_{t-}$$

- where $U_{t-}=\lim_{s\uparrow t}U_s$ is the price of the claim "just before" default
- Key assumption is that this L_t is predictable by the information up to t, i.e., \mathcal{F}_t

- We know that if we discounted the gain from an asset by the short-rate process r, the gain process must be a martingale under Q.
- The discounted gain process *G* is defined by:

$$G_t = \exp\left(-\int_0^t r_s ds\right) V_t (1 - \Lambda_t) + \int_0^t \exp\left(-\int_0^s r_u du\right) (1 - L_s) V_{s-} d\Lambda_s$$

- This is a martingale. What should we do to get V_t ? Ito's Lemma.
- Let $dG_t = 0$ and use the fact that $X' = (1 L_t)U_{t-}$, we can get

$$V_t = \int_0^t R_s V_s ds + m_t$$

• Given the terminal boundary condition $V_T = X$, we can get:

$$V_0 = E^Q \left[\exp\left(-\int_0^T R_t dt\right) X \right]$$

where $R_t = r_t + h_t L_t$

• We can see another advantage of this model. In its final form, we can get rid of (X',T'), Λ_t and U_t . That being said, we don't need to model the characteristics of the defaultable claim. Instead, only by considering the non-defaultable contingent claim and changing the discount rate can get the final answer.

Some Special Cases

ullet Continuous-time Markov formulation: Assume a state variable process Y that is Markovian

$$J(Y_t, t) = E^{Q} \left[\exp\left(-\int_{t}^{T} \rho(Y_s) ds\right) g(Y_T) \mid Y_t \right]$$

• $Y_t = (Y_{1t}, Y_{2t}, ..., Y_{nt})'$ solves a SDE:

$$dY_t = \mu(Y_t)dt + \sigma(Y_t)dB_t$$

• J solves the backward Kolmogorov PDE:

$$J_t(y,t) + J_y(y,t)\mu(y) + \frac{1}{2}trace\left(J_{yy}(y,t)\sigma(y)\sigma'(y)\right) - \rho(y)J(y,t) = 0$$

with boundary condition

$$J(y,T) = g(y)$$

Some Special Cases

• Price-dependent expected loss rate:

$$J(Y_t, t) = E^Q \left[\exp\left(-\int_t^T \rho(Y_s, J(Y_s, s)) ds\right) g(Y_T) \mid Y_t \right]$$

Corresponding PDE can be treated numerically

Uncertainty about recovery:

$$X' = (1 - l)U_{T'-}$$

where l is a bounded, $\mathcal{F}_{T'}$ measurable random variable

- L_t is the expectation of l given all info up to but not including time t.
- $L_{T'} = E(l|\mathcal{F}_{T'-})$
- With this change, the pricing formula $R_t = r_t + h_t L_t$ still applys.

Consider the following recovery methods:

RT: $\varphi_t = (1 - L_t)P_t$, where L is an exogenously specified fractional recovery process and P_t is the price at time t of an otherwise equivalent, default-free bond [Jarrow and Turnbull (1995)].

RFV: $\varphi_t = (1 - L_t)$; the creditor receives a (possibly random) fraction $(1 - L_t)$ of face (\$1) value immediately upon default [Brennan and Schwartz (1980) and Duffee (1998)].

• Under RT, the computational burden of directly computing V_t can be substantial. Time of default, the joint \mathcal{F}_t -conditional distributions of L_v , h_s , r_u for all v, s, u between t and T plays a computationally challenging role in determining V_t .

- RMV: $E_s^Q[\varphi_{s+1}] = (1 L_s)E_s^Q[V_{s+1}]$
- RMV vs RFV: RMV matched to the legal structure of swap contract better. RMV model is more convenient for corporate bonds because we can just apply standard default-free term-structure modelling techniques. RFV, on the other hands, is more realistic when absolute priority applies.
- Is there a significant difference between RMV and RFV model?
- ullet For simplicity, we take $L_t=\overline{L}$, a constant. We model r and h by

$$r_t = \rho_0 + Y_t^1 + Y_t^2 - Y_t^0$$
$$h_t = bY_t^0 + Y_t^3$$

where Y_t^i is "square root diffusions" under Q

Under RMV assumption:

$$V_{nt}^{RMV} = cE_t^Q \left(\sum_{j=1}^{2n} e^{-\int_t^{t+.5j} R_s \, ds} \right) + E_t^Q \left(e^{-\int_t^{t+n} R_s \, ds} \right)$$

where $R_t = r_t + h_t \overline{L}$

• Under RFV assumption:

$$V_{nt}^{RFV} = cE_t^Q \left(\sum_{j=1}^{2n} e^{-\int_t^{t+0.5j} (r_s + h_s) ds} \right) + E_t^Q \left(e^{-\int_t^{t+n} (r_s + h_s) ds} \right)$$

$$+ \int_t^{t+n} (1 - \bar{L}) \gamma(Y_t, t, s) ds,$$
where $\gamma(Y_t, t, s) = E_t^Q \left(h_s e^{-\int_t^s (r_u + h_u) du} \right)$

- Calibrate the RMV and RFV model:
- Bonds with fixed ten-year par-coupon spreads. (known c)
- Fixed $L_t = \overline{L}$
- r_t and h_t are modelled by several square-root diffusion processes
- Minimizing the error between model estimated bond prices and real bond prices through changing the parameters of r_t and h_t .
- ullet Compute the mean implied intensity $ar{h}$

Figure 2 For fixed ten-year par-coupon spreads, S, this figure shows the dependence of the mean hazard rate \bar{h} on the assumed fractional recovery $1 - \bar{L}$. The solid lines correspond to the model RFV, and the dashed lines correspond to the model RMV.

Figure 3 Term structures of par-coupon yield spreads for *RMV* (dashed lines) and *RFV* (solid lines), with 50% recovery upon default, a long-run mean hazard rate of $\theta_h = 200$ bp, a mean reversion rate of $\kappa = 0.25$, and an initial hazard-rate volatility of 100%.

- Note that the hazard rate process h_t and the fractional loss L_t enter the discount rate in the product from $h_t L_t$
- ullet Knowledge of defaultable bond prices before default alone is not sufficient to separately identify h_t and L_t
- If one has prices of undefaulted junior and senior bonds of the same issuer, along with the prices of the Treasury bonds, we can extract $h_t L_t^J$ and $h_t L_t^S$, thus can infer L_t^J/L_t^S .
- We can just model jointly the dynamic properties of r_t and the "short spread" $s_t \equiv h_t L_t$

Case 1: Square root diffusion model of Y

$$r_t = \delta_0 + \delta_1 Y_{1t} + \delta_2 Y_{2t} + \delta_3 Y_{3t}$$
$$s_t = \gamma_0 + \gamma_1 Y_{1t} + \gamma_2 Y_{2t} + \gamma_3 Y_{3t}$$

 Dai and Singleton (1998) proposes the "most flexible" affine term structure model

$$dY_t = \mathcal{K}(\Theta - Y_t)dt + \sqrt{S_t}dB_t$$

where \mathcal{K} is a 3*3 matrix with positive diagonal and nonpositive off-diagonal elements; Θ in \mathbb{R}^3_+ ; S_t is 3*3 diagonal matrix with diagonal elements Y_{1t} , Y_{2t} and Y_{3t}

- Duffie (1999) considered the special case in which $\delta_0=-1$ and $\delta_3=0$, so r_t could take on negative values and depend only on the first two state variables.
- He also assumed that \mathcal{K} is diagonal $(Y_{1t}, Y_{2t} \text{ and } Y_{3t} \text{ are independent})$
- However, the only means of introducing negative correlation among r_t and s_t is to allow for negative γ , which means the hazard rate may take on negative values.
- Within this correlated square-root model of (r_t, s_t) , one cannot simultaneously have a nonnegative hazard rate process and negatively correlated r_t and h_t without having one or more γ or δ negative.

• Case 2: More flexible correlation structure for (r_t, s_t)

$$r_{t} = \delta_{0} + \delta_{1}Y_{1t} + Y_{2t} + Y_{3t}$$
$$s_{t} = \gamma_{0} + \gamma_{1}Y_{1t} + \gamma_{2}Y_{2t}$$

We assume that

$$dY_t = \mathcal{K}(\Theta - Y_t)dt + \Sigma \sqrt{S_t}dB_t$$

where \mathcal{K} is a 3*3 matrix with positive diagonal and nonpositive off-diagonal elements; Θ in \mathbb{R}^3_+ ; and

$$S_{11}(t) = Y_1(t),$$

$$S_{22}(t) = [\beta_2]_2 Y_2(t),$$

$$S_{33}(t) = \alpha_3 + [\beta_3]_1 Y_1(t) + [\beta_3]_2 Y_2(t)$$

- All of δ_0 , δ_1 , γ_0 , γ_1 , γ_2 are strictly positive
- Dai and Singleton show that in this case the most flexible and admissible affine term structure has:

$$\mathcal{K} = \begin{bmatrix} \kappa_{11} & \kappa_{12} & 0 \\ \kappa_{21} & \kappa_{22} & 0 \\ 0 & 0 & \kappa_{33}, \end{bmatrix} \quad \Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \sigma_{31} & \sigma_{32} & 1, \end{bmatrix}.$$

• The short-spread rate s_t is strictly positive. At the same time, the signs of σ_{31} and σ_{32} are unconstrained, so the third state variable may have increments that are negatively correlated with the first two.

Valuation of defaultable callable bonds

 During the time window of callability, we have the recursive pricing formula

$$V_t = \min[\overline{V_t}, e^{-R_t} E_t^Q (V_{t+1} + d_{t+1})]$$

• Outside the callability window,

$$V_t = e^{-R_t} E_t^Q (V_{t+1} + d_{t+1})$$

Valuation of defaultable callable bonds

• In a more continuous time context, let $\mathcal{T}(t,T)$ denote the set of feasible call policies. The market price at t is:

$$V_t = \min_{\tau \in \mathcal{T}(t,T)} E_t^{\mathcal{Q}} \left[\sum_{t < T(i) \le \tau} \gamma_{t,T(i)} c_i + \gamma_{t,\tau} \right]$$

where

$$\gamma_{t,s} = \exp\left(-\int_t^s R_u \, du\right)$$

• This equation can be solved by a discrete algorithm similar to the equations in the previous slide.

More (in the paper)

- Defaultable HJM model
- Pricing Credit Derivatives
- Etc.

Take home message

• The initial market value of the defaultable claim to X is

$$V_0 = E^Q \left[\exp\left(-\int_0^T R_t dt\right) X \right]$$

where the default-adjusted short-rate process $R_t = r_t + h_t L_t$

- All financial products with defaultable nature can be modeled in this way.
- If we assume that h_t and L_t are exogenous process, we can just model the process R for the defaultable bonds instead of r.

My remarks (pros)

- Very detailed.
- A variety of models regards to defaultable claims/bonds under different assumptions are given.
- These models can be directly applied in the market using market data (calibration).
- Some brief comparisons of models are given.

My remarks (cons)

- Too much theoretical stuffs, should give more calibration (I mean to be theoretical is good, but it is always better to give some empirical results)
- More like a encyclopedia instead of a paper. (always introduce a model and say "please refer to some other papers". I think a paper should focus one or a few models and dig deeper).
- Without a clear conclusion. (which model is good or bad under which conditions?)

Thank you

• 🙂